【連載:子供の科学】ゴールドバッハ予想

子供の科学 2021.11月号
好評連載中
めざせ!マスマジシャン
LESSON67
素数マジック
ゴールドバッハ予想

binary Goldbach 予想 6以上の偶数は全て、2つの奇素数の和として表されるだろう
ternary Goldbach 予想 9以上の奇数は全て、3つの奇素数の和として表されるだろう

前者がいわゆるGoldbach 予想

binary、ternaryはそれぞれstrong、weakとも呼ばれるが本稿ではメインの表記にはしなかった
もちろん日本では強い、弱いがよく使われる(というか、ほとんどそうである)のでそうとも呼ばれると記述はしておいた

binary(2つ組)、ternary(3つ組)の方が誰にもわかりやすい
ましてや初心者にとってはなおさら

強い、弱いは悪くはないが数学を知らない人には「なぜそう呼ぶのか」と思わせてしまう
なので3つ組ゴールドバッハ予想の表記をメインにした

1000000 = 567107 + 432893
987653 = 493877 + 246937 + 246839
の例は当てずっぽうではわからない
Pythonでコーディングしてもとめた

binary Goldbach予想は未だ未解決
ternary Goldbach予想は2013年に
Helfgott,H.A. and Platt,Numerical verification of ternary Goldbach, preprint;arXiv: 1305.3062.
によって完全に証明が完了した

binaryはternaryよりも難しいのでそれぞれstrong、weakと呼ばれる

定理1(Helfgott、2013)
10^{30}(31桁)以上の奇数は全て3つの奇素数の和である。
Helfgott,H.A.,Major arcs for Goldbach’s problem, preprint; arXiv:1305.2897.(133ページ)
Helfgott,H.A.,Major arcs for Goldbach’s problem, preprint; arXiv:1205.5252.(79ページ)

定理2(Helfgott and Platt)
9\leq N\leq 8,875,694,145,621,773,516,800,000,000,000(>8\cdot 10^{30}\;31桁)の奇数Nはすべて3つの奇素数の和である。

以上定理1と定理2から、次がただちに従う。
定理3
ternary Goldbach予想は正しい。

一般Riemann予想
Helfgottによる、3つ組ゴールドバッハ予想の証明で興味深いのはリーマン予想との関係である

定理4(Zinoviev、1997)
DirichletのL函数に対する一般Riemann予想が正しければ, 10^{20}以上の全ての奇数は3つの奇素数の和である。

Helfgottは一般Riemann予想の条件をはずしてもternary Goldbach予想が成り立つことを証明した
Helfgottの定理1の証明には前述した133ページと79ページのプレプリントの他にHelfgottによる一般Riemann予想をチェックした論文も必用である
いつの日にかそのことを子供の科学の連載で紹介できる時を楽しみにしている

R0038831